

From Waste to Worth

Bioenergy Technologies Using Agricultural and Industrial Waste

Sentinel Innovation Co., Ltd

©SENTINEL INNOVATION Co., Ltd. ALL RIGHTS RESERVED

Who We Are

Turning Waste into Clean Energy

Sentinel is a climate-tech startup turning agricultural and industrial waste into low-carbon energy solutions - Including bio-oil, biochar, and carbon black.

Our work spans from coffee husks to used tires, helping communities reduce emissions while creating local energy access

The Problem

Why Waste-to Energy?

The Rising Challenge and Missed Opportunities

USD 252B

Direct cost of global waste management

USD 361B

Hidden costs from pollution, health damage, and climate impact

= Total societal cost: Over USD 600B annually

Underutilized organic & industrial waste Environmental & social costs
Poor recycling & energy access

Our Solution

Turning Waste into Clean Energy

Localized energy production

Lower carbon emissions

Circular economy models in under-resourced regions

Turning Waste into Clean Energy

What is Bioenergy?

Bioenergy, derived from biomass, offers low-carbon alternatives to fossil fuels through solid and liquid energy products such as biochar and bio-oil

(recognized by IEA and IPCC)

Solid Biofuel (Biochar, Briquettes, etc)

Solid carbon-based fuel produced by pyrolyzing agricultural and forestry waste under high-temperature, oxygen-free conditions.

- Low-emission alternative to firewood and charcoal
- Improves indoor air quality and reduces deforestation
- Can be used in institutional settings (schools, refugee camps, etc.)
- Supports energy access in off-grid communities

Liquid Biofuel (Bio-oil)

Liquid fuel obtained by condensing volatile organic compounds released during the pyrolysis of biomass.

- Viable alternative to diesel and heavy fuel oil
- Exportable to meet global renewable fuel standards (RED II, RFS, ISCC)
- Usable for industrial boilers, blended fuels, and even aviation fuel development
- Generates carbon credits through certified low-carbon performance

Modular Bioenergy Platform for Scalable, Multi-Stream Revenue

>> Platform-based recurring revenue with scalable BOO(Build-Own-Operate) model

Business Structure & Multi-stream Revenue Model

Multi-Stream Revenue Model

Revenue Stream	Target Region	Target Customers
Biochar(Bio-Briquettes)	East Africa	B2B & B2G: Commercial facilities and international organizations
Bio-Oil	EU & North America	B2B : Bio-oil refiners and blending companies
Carbon Credits	EU & Global	Carbon market brokers, government agencies
Tech Licensing & Consulting	Global	Technology partners, development agencies, international organizations, NGOs

Our Technology

Pyrolysis-based Bioenergy Platform

>> Operating a decentralized, modular biofuel plant that internally reuses Biochar, Bio-oil, and syngas—minimizing emissions and energy use.

^{*} Detailed processes may vary depending on the processing capacity, processing environment and conditions.

Waste Tire Pyrolysis Unit

>> A Pyrolysis-based system designed to extract both Carbon Black and Oil from industrial waste, such as waste tires and plastics.

Global Project Experience (1) Türkiye

Ahlat Energy, Türkiye

- Waste tire pyrolysis system
- 80,000 tons/year capacity
- 40% oil / 40% carbon black

▲ Waste Tire

▲ Pyrolysis Reactor (Kiln Type)

▲ Carbon Black

Global Project Experience (2) Spain

Greenval Technologies, Spain

- Waste tire chip pyrolysis system
- 10,000 tons/year capacity
- Facility Site Area: 12,000 m² in total

▲ Waste Tire Chips

▲ Pyrolysis Reactor (Screw Type)

Investment & Revenue Projection for Tire Pyrolysis Plant

⊘ CAPEX

Plant Capacity		CAPEX (USD)
10~30ton/day (tire input)	Fully automatic	\$2.25 million
	Semi- automatic	\$1.05 million
	Manual	\$0.45 million

- * This amount covers machinery costs only, excluding construction, installation and other related expenses. Operational expenditures (OPEX) are not included and may vary by region, labor cost, and plant operation scheme.
- * The revenue structure right side is based on a fully automatic facility.
 Unit prices for each revenue stream are estimated using market reports, industry analysis, and international trading data from recent years.

Revenue Scenarios

* 300 operational days per year (average processing of 30 tons/day per site)

Revenue Sources (yield %)	Base Scenario (USD/year)	Optimized Scenario (USD/year)
Oil (40%)	\$1.15M	\$2.02M
Carbon Black (30%)	\$0.54M	\$1.08M
Scrap Steel (10%)	\$0.11M	\$0.14M
Total	\$ 1.80M	\$ 3.24M

Revenue Assumptions (Base/Optimized Scenarios)

Oil

- Typical market price: USD 400–700 per ton
- High-quality or suitable for further refining: Above USD 800 per ton

Carbon Black

- Unrefined carbon black: USD 200–400 per ton
- High-quality, refined rCB: USD 500-700 per ton

Scrap Steel

• Average market price: USD 150–250 per ton, depending on the region

Coffee Husk-to-Energy

Our platform transform agricultural residues, particularly coffee husks, into clean and renewable energy.

The process produces solid biofuels (bio-briquettes), helping replace wood and charcoal while reducing indoor air pollution and deforestation.

It also generates bio-oil, which is reused as an energy source to operate the systems itself, enabling a self-sufficient, circular energy model.

Circular Bioenergy System: Production – Reuse – Impact

>>> Abundant feedstock → Fuel Production → Revenue & Impact

Stable Feedstock

- Among the world's largest coffee producers: ~600,000 tons of coffee husks generated annually (Uganda alone)
- Local supply security: raw material widely available with minimal risk
- Strategic location: within East Africa's coffee belt

Scalable Market Opportunities

- Biochar (1,680 t/year): replaces ~10% of local charcoal market → ~USD 800M/year potential (East Africa charcoal market ≈ USD 8B)
- Bio-oil (2,220 t/year): part of a global market worth USD 6.82B
- Diversified revenue streams:
 Biochar/Bio-briquettes, Bio-oil, potential carbon credits

^{*} All figures are based on a single plant processing 6,000tons of coffee husk per year.

Our Technology

Uganda Coffee Husk-to-Bioenergy Pilot Plant

>> Decentralized, modular biofuel plant that internally reuses Biochar, Bio-oil, and syngas—minimizing emissions and energy use.

Specifications

Feedstock Capacity	20 tons/day (coffee husks)
Biochar yield	~30% (1,680t/year)
Bio-oil yield	~40% (2,220t/year)
Technology	Modular pyrolysis unit with internal fuel reuse system
Carbon savings	Up to 4,704 tCO₂/year per unit
CAPEX	Approx. USD 2.5M (equipment only)
Energy self-sufficiency	>70%

- Modular & Scalable
- Low-skill operable
- Self-powered operation
- Adaptable to local waste types

Financial Overview & Market Entry Strategy

ROI Scenarios * 300 operational days per year (average processing of 20 tons/day per site)

Cost Items	Amount (USD)
Total Investment Cost	\$5,000,000
Annual Revenue	\$2,008,200
Annual Operating Cost	\$570,000
Depreciation	\$350,000
Annual Net Profit	\$1,088,200
ROI (Annual Basis)	21.8%
Payback Period	5 years

Investment recovery within 5 years

- Annual ROI of over 21% → Highly attractive among infrastructure-type projects
- Potential for shortened payback period through carbon credit sales, government incentives for electricity sales, and export markets
- Sequential deployment of additional units after first-year operation to diversify risk
- Market penetration through Bio-briquettes + Bio-oil as diversified fuel product portfolio

Solution East Africa Market Entry Strategy

Technology Expansion

- Localized technology strategy
- GBIL Uganda Jinja PoC Plant (800kg/day) → Expansion to Bioenergy Belt
- Development of an integrated modular solution
- PCT international patent application in progress

Business Expansion

- Establishment of local entity and plant
- Entry based on Official Development Assistance(ODA) projects
- KOICA CTS & IBS: Expansion into East Africa with support from international agencies
- Partnership building (B2B, B2G)
- AfDB SEFA Project (Pilot Demonstration), UNDP Climate Innovation Accelerator (UNICA) project

Funding Acquisition

- Overseas investor engagement : G-Next, Global Accelerator
- International Climate Finance: EDCF (Economic Development Cooperation Fund), Green Climate Fund(GCF), Global Environment Facility (GEF)

East Africa Bioenergy Belt

>>> Developing a coffee husk-based bioenergy belt in East Africa

>>> Planned phased expansion: 2025-2031

- Phase 1 (2025-2026): Launch & Scale in Uganda
 - Deploy initial modular unit in Uganda
 - Expand to 8 local sites across major coffee-producing regions
 - Establish biomass supply chains and operational partnerships
 - Processing Capacity: 20 tons/day (dry biomass)
- Phase 2 (2026-2031): Regional Expansion in East Africa
 - Extend the model to Kenya, Tanzania, and Ethiopia
 - Adapt system to local biomass types
 - Scale production to 80 tons/day (dry biomass)
 - Target carbon market integration and cross-border fuel distribution

>>> Why the Belt Model Works

- Easily replicable in high-biomass, low-infrastructure areas
- Supports national clean cooking goals and decentralized fuel access
- Scalable across East Africa's coffee belt and adaptable to diverse biomass types
- Crates a regional platform for cross-border fuel access and carbon credit integration

PFD (Basic type of biochar and bio-oil production)

PFD (Advanced type of biochar and bio-oil production)

